145 research outputs found

    On prefixal factorizations of words

    Full text link
    We consider the class P1{\cal P}_1 of all infinite words xAωx\in A^\omega over a finite alphabet AA admitting a prefixal factorization, i.e., a factorization x=U0U1U2x= U_0 U_1U_2 \cdots where each UiU_i is a non-empty prefix of x.x. With each xP1x\in {\cal P}_1 one naturally associates a "derived" infinite word δ(x)\delta(x) which may or may not admit a prefixal factorization. We are interested in the class P{\cal P}_{\infty} of all words xx of P1{\cal P}_1 such that δn(x)P1\delta^n(x) \in {\cal P}_1 for all n1n\geq 1. Our primary motivation for studying the class P{\cal P}_{\infty} stems from its connection to a coloring problem on infinite words independently posed by T. Brown in \cite{BTC} and by the second author in \cite{LQZ}. More precisely, let P{\bf P} be the class of all words xAωx\in A^\omega such that for every finite coloring φ:A+C\varphi : A^+ \rightarrow C there exist cCc\in C and a factorization x=V0V1V2x= V_0V_1V_2\cdots with φ(Vi)=c\varphi(V_i)=c for each i0.i\geq 0. In \cite{DPZ} we conjectured that a word xPx\in {\bf P} if and only if xx is purely periodic. In this paper we show that PP,{\bf P}\subseteq {\cal P}_{\infty}, so in other words, potential candidates to a counter-example to our conjecture are amongst the non-periodic elements of P.{\cal P}_{\infty}. We establish several results on the class P{\cal P}_{\infty}. In particular, we show that a Sturmian word xx belongs to P{\cal P}_{\infty} if and only if xx is nonsingular, i.e., no proper suffix of xx is a standard Sturmian word

    Clustering words

    Full text link
    We characterize words which cluster under the Burrows-Wheeler transform as those words ww such that wwww occurs in a trajectory of an interval exchange transformation, and build examples of clustering words

    Central sets and substitutive dynamical systems

    Full text link
    In this paper we establish a new connection between central sets and the strong coincidence conjecture for fixed points of irreducible primitive substitutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological dynamics, constitute a special class of subsets of \nats possessing strong combinatorial properties: Each central set contains arbitrarily long arithmetic progressions, and solutions to all partition regular systems of homogeneous linear equations. We give an equivalent reformulation of the strong coincidence condition in terms of central sets and minimal idempotent ultrafilters in the Stone-\v{C}ech compactification \beta \nats . This provides a new arithmetical approach to an outstanding conjecture in tiling theory, the Pisot substitution conjecture. The results in this paper rely on interactions between different areas of mathematics, some of which had not previously been directly linked: They include the general theory of combinatorics on words, abstract numeration systems, tilings, topological dynamics and the algebraic/topological properties of Stone-\v{C}ech compactification of \nats.Comment: arXiv admin note: substantial text overlap with arXiv:1110.4225, arXiv:1301.511

    On the least number of palindromes contained in an infinite word

    Full text link
    We investigate the least number of palindromic factors in an infinite word. We first consider general alphabets, and give answers to this problem for periodic and non-periodic words, closed or not under reversal of factors. We then investigate the same problem when the alphabet has size two.Comment: Accepted for publication in Theoretical Computer Scienc

    The sequence of open and closed prefixes of a Sturmian word

    Full text link
    A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose nn-th element is 00 if the prefix of length nn of the word is open, or 11 if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binary factorial languages. We then discuss several aspects of Sturmian words that can be expressed through this sequence. Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-sequence.Comment: Published in Advances in Applied Mathematics. Journal version of arXiv:1306.225

    Some characterizations of Sturmian words in terms of the lexicographic order

    Get PDF
    In this paper we present three new characterizations of Sturmian words based on the lexicographic ordering of their factors

    A Coloring Problem for Infinite Words

    Full text link
    In this paper we consider the following question in the spirit of Ramsey theory: Given xAω,x\in A^\omega, where AA is a finite non-empty set, does there exist a finite coloring of the non-empty factors of xx with the property that no factorization of xx is monochromatic? We prove that this question has a positive answer using two colors for almost all words relative to the standard Bernoulli measure on Aω.A^\omega. We also show that it has a positive answer for various classes of uniformly recurrent words, including all aperiodic balanced words, and all words xAωx\in A^\omega satisfying λx(n+1)λx(n)=1\lambda_x(n+1)-\lambda_x(n)=1 for all nn sufficiently large, where λx(n) \lambda_x(n) denotes the number of distinct factors of xx of length n.n.Comment: arXiv admin note: incorporates 1301.526

    Abelian maximal pattern complexity of words

    Full text link
    In this paper we study the maximal pattern complexity of infinite words up to Abelian equivalence. We compute a lower bound for the Abelian maximal pattern complexity of infinite words which are both recurrent and aperiodic by projection. We show that in the case of binary words, the bound is actually achieved and gives a characterization of recurrent aperiodic words
    corecore